An analytical study was conducted to determine the natural frequencies and mode shapes for laminated anisotropic plates, taking into account the effects of shear deformation and rotatory inertia. The Galerkin Technique was used to solve the equations of motion. Three different boundary conditions were considered: simply-supported, clamped, and two opposite sides clamped. The effects of material properties and mode shapes were investigated. The results show that the mode shapes and natural frequencies of plates can be accurately predicted using the Galerkin Technique.
attractive by teachers and students alike. After a brief introduction to Fourier series in the first chapter, free and forced vibration of single degree-of-freedom systems with and without damping is developed in the next four chapters. Two degree-of-freedom systems including vibration absorbers are studied in chapter six. The seventh chapter generalises the previous results to multiple degree-of-freedom systems. Examples are worked out in details to illustrate the orthogonality of mode shapes. The normal mode method and the method of matrix iteration. Analysis of continuous systems such as shafts, bars and beams is presented in chapter eight. Transformations to handle general time dependent boundary condition problems are described with examples. Torsional vibration of geared systems, shaft whirling and critical speeds are discussed in chapter nine. The numerical methods of Stodola and Holzer for finding critical speeds are described with examples. The tenth chapter is devoted to understand approximate methods for finding natural frequencies and mode shapes. Rayleigh's quotient, Dunkerley's approximation are described followed by Rayleigh-Ritz and Galerkin's methods. The book ends with a short appendix to indicate how elementary result derived in chapter four on support excitation of damped springmass systems are useful in measurement of vibration. Focusing on applications rather than rigorous proofs, this volume is suitable for upper-level undergraduates and graduate students concerned with vibration problems. In addition, it serves as a practical handbook for performing vibration calculations. An introductory chapter on fundamental concepts is succeeded by explorations of frequency response of linear systems and general response properties, matrix analysis, natural frequencies and mode shapes, singular and defective matrices, and numerical methods for modal analysis. Additional topics include response functions and their applications, discrete response calculations, systems with symmetric matrices, continuous systems, and parametric and nonlinear effects. The text is supplemented by extensive appendices and answers to selected problems. This volume functions as a companion to the author's introductory volume on random vibrations (see below). Each text can be read separately; and together, they cover the entire field of mechanical vibrations analysis, including random and nonlinear vibrations and digital data analysis.

Copyright code: 7ee107d4810939aa1f6c95db3eaaeb74bf